l've got a database in Brooklyn to sell you.

Timon Karnezos Neustar SF PostgreSQL User's Group 2014-09-23

a crude overview of sketching history of hyperloglog postgresql-hll resources for further study

Background

a crude definition of

probabilistic & streaming

algorithms

streaming setting: small (sublinear) memory one pass over data constant update time (silly) streaming algorithms: max, min, mean

probabilistic algorithm: inject reproducible randomness

"smooth out" average case

sketching = streaming & probabilistic:

approximate answer

error bound holds with some prob.

[nice to have: additivity]

POST /nasal/drip @moonpolysoft

smugly points out that something is no panacea

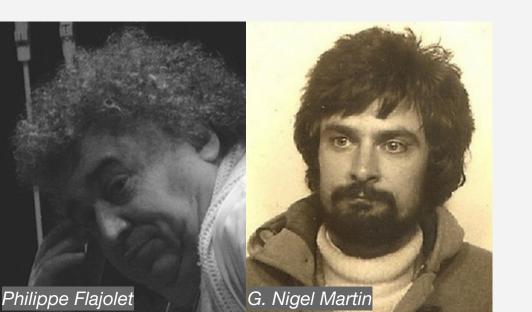
◆ Reply ★ Retweet ★ Favorite ••• More

RETWEETS

FAVORITES

7:41 AM - 28 Aug 2014

History



- → RDBMS research in 70s
- → automatic query planning
- \rightarrow need selectivity estimates
- \rightarrow need cardinality estimates

count to N
with log₂(N) bits

count to N with log₂(N) bits

intuition:

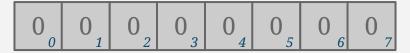
if i flip a coin a bunch of times, and tell you I saw 10 heads in a row at some point, how many times did i toss that coin?

Assume $N = 2^8$ for this example.

Assume h(v) is a "good" hash function.

Assume h(v)—
is a "good" hash
function.

Map from domain D to {0,1} ¹ for some large enough L (usually 32) whose output is uniformly random.

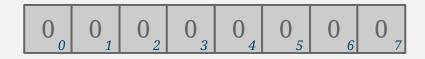


 $h(v_0) = 10000000$

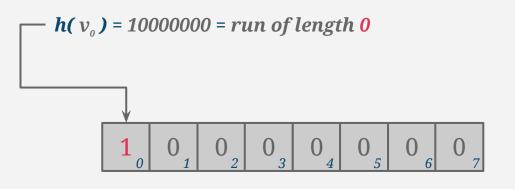
 \rightarrow hash values to $\{0,1\}^L$

0	0	0	0	0	0	0	0
0	1	2	3	4	5	6	7

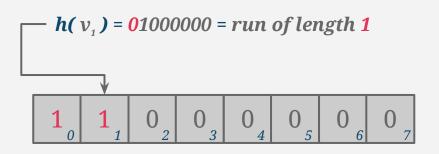
 $h(v_0) = 100000000 = run of length 0$



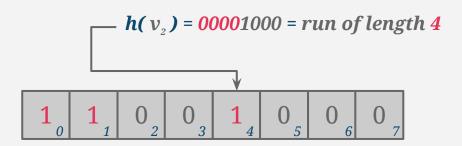
- \rightarrow hash values to $\{0,1\}^L$
- → track runs of lead zeroes



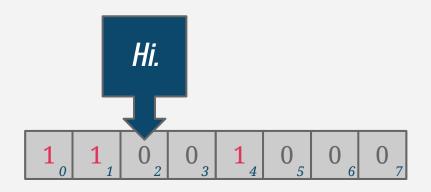
- \rightarrow hash values to $\{0,1\}^L$
- → track runs of lead zeroes
- → mark run length in bitmap



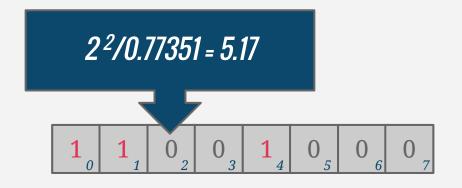
- \rightarrow hash values to $\{0,1\}^L$
- → track runs of lead zeroes
- → mark run length in bitmap



- \rightarrow hash values to $\{0,1\}^L$
- → track runs of lead zeroes
- → mark run length in bitmap

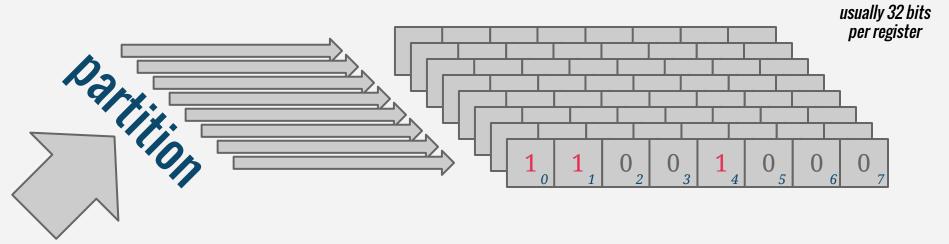


- \rightarrow hash values to $\{0,1\}^L$
- → track runs of lead zeroes
- → mark run length in bitmap
- → find index of left-most zero

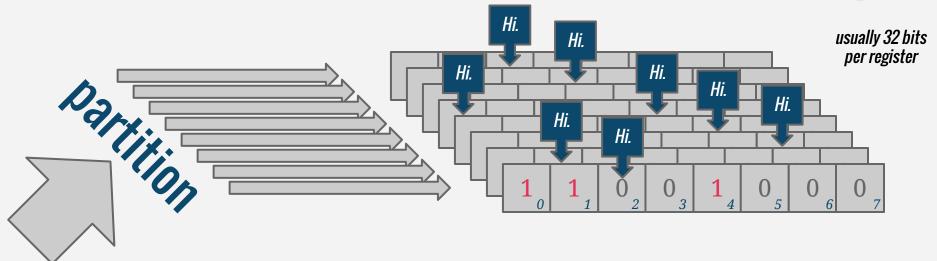


- \rightarrow hash values to $\{0,1\}^L$
- → track runs of lead zeroes
- → mark run length in bitmap
- → find index of left-most zero
- \rightarrow cardinality: $2^i/\phi$

so that an estimate based on (1) will typically be one binary order of magnitude off the exact result, a fact that calls for more elaborate algorithms to be developed in Section 3.



"... with Stochastic Averaging"



"... with Stochastic Averaging"

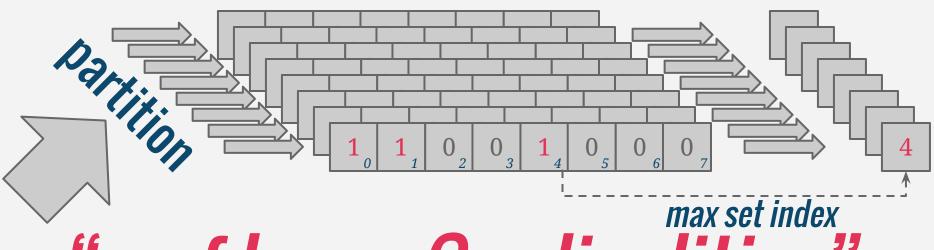
error bounded by:

0.78/sqrt(substream count)

"... with Stochastic Averaging"

"LogLog Counting"

only <u>5 bits</u> per register!



"... of Large Cardinalities"

"LogLog Counting"

error bounded by:

1.3/sqrt(substream count)

"... of Large Cardinalities"

"LogLog Counting"

z is a positive real. The function ub(z) is equal to $e^z(1+z2^{-l})$.

Proof of proposition 2 Maple gives us a nice expression for the integral of f.

$$\int_{2^{l}}^{\infty} f(x)dx = 2^{l/m} \sum_{k>1} \frac{1}{k-1/m} \frac{1}{k!} \left((-n/2^{l})^{k} - (-2n/2^{l})^{k} \right).$$

"HyperLogLog"

$$\left[\alpha_{m}m2^{\left(\frac{\sum_{i}M_{i}}{m}\right)}\right]$$

- → same data structure as LogLog
- → better mean of register values (arithmetic to harmonic mean)
- → tighter error bounds

compute
$$Z := \left(\sum_{j=1}^{m} 2^{-M[j]}\right)^{-1}$$
; {the "indicator" function}

return $E := \alpha_m m^2 Z$ with α_m as given by Equation (3).

Enough theory!

postgresql-hll

- →code
- \rightarrow design
- →examples
- →data brag
- →lessons learned

postgresql-hll

- **→2500 lines of C**
- →500 lines of SQL
- →1000 lines of comments
- →Austin Appleby's C++ Murmur3
- →55MB test vectors

- →marshal to/from bytea
- →bit slicing to update registers
- → formula for cardinality
- →union(hll₁, hll₂)

compact, combinable, approximate unique counts of users

compact, combinable, approximate

Hierarchical storage format

- →empty token (3 bytes)
- →explicit list of hashes (8 bytes x configurable)
- →hashmap of register index to register value (...)
- \rightarrow full array of registers representation (5 x 2^{m-3} bytes)

compact, combinable, approximate

Additivity allows:

- →union ("seen A or seen B")
 - **→union preserves relative error**
- →set difference* ("seen A but not B")
- →intersections* ("seen A and B")

*use sparingly! non-linear error propagation! (bit.ly/hllinter)

compact, combinable, approximate

Relative error:

- \rightarrow 2¹⁴ x 5-bit registers = 81920 bits = 10kB
- →1% relative error
 - →e.g. 1B uniques x 1% = ±10M absolute count error

daily_uniques		
Column	Туре	Meaning
report_date	date	day of counts
impressions	bigint	number of page views
users	hll	set of unique cookie ids

```
SELECT
    report_date,
    impressions,
    #users
FROM daily_uniques
WHERE report_date BETWEEN
    '...' AND '...'
```

```
SELECT report_date,
       SUM(impressions)
                            OVER last7 AS imps_cumu,
      #hll_union_agg(users) OVER last7 AS users_cumu,
      imps_cumu/users_cumu
                                        AS avg_frequency
FROM daily_uniques
WINDOW last7 AS
   (ORDER BY report_date ASC ROWS 6 PRECEDING)
WHERE report_date BETWEEN '...' AND '...'
ORDER BY report_date ASC
```

For more examples, see:

bit.ly/pghll

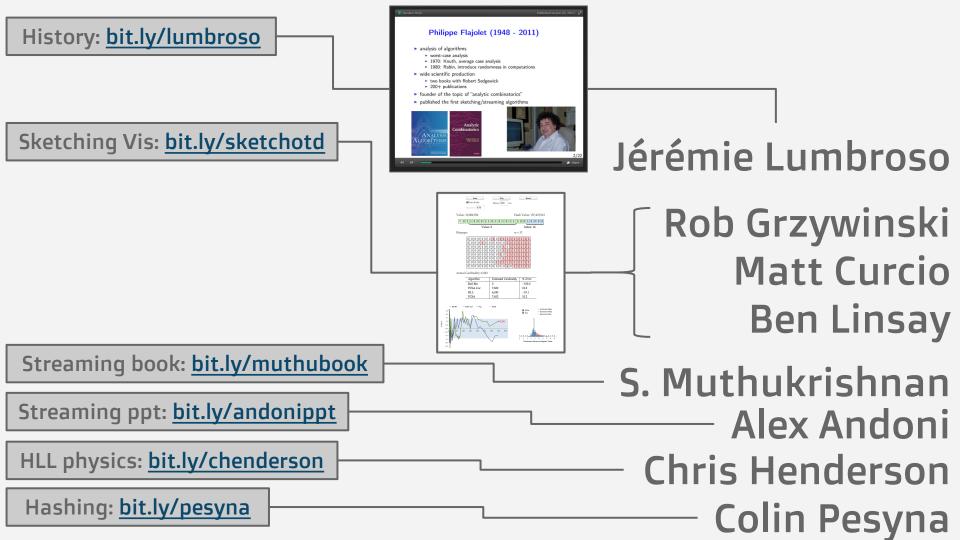
bragging rights

- →PG 9.3
- →MMs new hll instances/day
- →hll_union_agg 1M rows ~20s
- → Java interop via java-hll
- → Been doing this for 4+ years

lessons learned

- → Pick a good non-cryptographic hash
- → Don't mess with inputs
- -Rigorously unit and fuzz test interop
- → Leave crumbtrails to the paper in source

I am extremely grateful to the following persons for their contributions to both this talk and to our open source efforts.



@alberts
@blinsay
@jdmaturen
@metdos
@ozgune
@yerenkow

github.com/aggregateknowledge/{postgresql,java,js}-hll

Papers

- →<u>MJRTY</u> ('81)
- → Probabilistic Counting ('83)
- → Probabilistic Counting with Stochastic Averaging ('85)
- → LogLog (and SuperLogLog) ('03)
- → CountMin Sketch ('05)
- → HyperLogLog ('07)
- → K Min Values ('07)

Other Materials

- → Notes/Lectures from DIKU Summer School on Hashing ('14)
 - → Mikkel and Michael's talks are fantastic.
 - →In fact, just go read everything Michael's ever written on sketching
 - → {{Invertible, Compressed, Counting} Bloom, Cuckoo} {filters, tables}

I WILL PERSONALLY **BRIBE YOU** TO MAKE POSTGRESQL-HLL GO FASTER.

SSE/SIMD, toast magic, marshalling magic, WHATEVER MAGIC YOU GOT.

THANK YOU!