I've got a

gatabase in
Brookiyn to
sellyou. .=

a crude overview of sketching
history of hyperloglog
postgresql-hll

resources for further study

Background

a crude definition of
probabilistic & streaming
algorithms

streaming setting:

small (sublinear) memory
one pass over data
constant update time

(silly) streaming algorithms:
max, min, mean

probabilistic algorithm:
inject reproducible randomness
“smooth out” average case

sketching = streaming & probabilistic:
approximate answer

error bound holds with some prob.
[nice to have: additivity]

Vf POST /nasal/drip +®_ Follow

moonpolysoft

*smugly points out that something is no
panacea*

4 Reply ¢33 Retweet % Favorite ees More

RETWEETS FAVORITES = O R li‘ WQ m S RN

3 9

7:41 AM - 28 Aug 2014

“Probabilistic Gounting”™

Philippe Flajolet

1983

— RDBMS research in 10s

— automatic query planning
— need selectivity estimates
— need cardinality estimates

“Probabilistic Gounting”™

1983

countto N
with log ,(N) bits

“Probabilistic Gounting”™

1983

count to N-
with log ,(N) bits
|

“Probabilistic Counting™

1983

intuition:

if i flip a coin a bunch of times, and tell
you | saw 10 heads in a row at some
point, how many times did i toss that

coin?

“Probabilistic Counting™

1983

Assume N = 28
for this example.

“Probabilistic Counting™

1983

Assume h(v)
Is a "good " hash
function.

“Probabilistic Counting™

1983

Assume h(v) -
Is a "good " hash

function.

“Probabilistic Gounting”™

1983

“Probabilistic Gounting”™

1983

— hash values to {0,1}t

“Probabilistic GCounting”

1983

h(v,) = 10000000 = run of length 0

— hash values to {0,1}*
olololololololo — track runs of lead zeroes

“Probabilistic Gounting”™

1983
— h(v,) = 10000000 = run of length 0
| — hash values to {0,1}
Tololololololo — track runs of lead zeroes

— mark run length in bitmap

“Probabilistic Gounting”™

1983

— h(v,) = 01000000 = run of length 1

— — hash values to {0,1}!
TaTolololololo — track runs of lead zeroes
el ool ol of sl sl 7 — mark run length in bitmap

“Probabilistic Counting™

1983

— h(v,) =00001000 = run of length 4

* — hash values to {0,1}!
TiTololiToTol0 — track runs of lead zeroes
i rl o2l s sl 5 sl o — mark run length in bitmap

“Probabilistic Gounting”™

1 (1
o

0
2

0
sl “4] "5] "6 "7

1983

— hash values to {0,1}!

— track runs of lead zeroes
— mark run length in bitmap
—s find index of left-most zero

“Probabilistic Gounting”™

1983

— hash values to {0,1}!

ol o — track runs of lead zeroes
o — mark run length in bitmap
— find index of left-most zero

— cardinality: 2/

“Probabilistic Gounting”™

1983

so that an estimate based on (1) will typically be one binary order of magnitude off

the exact result, a fact that calls for more elaborate algorithms to be developed in
Section 3. | |

"... with Stochastic Averaging™

1985

“Probabilistic Coun tlng

.. With Stochastic Averaging”™

1985

“Probabilistic Gounting”™

error bounded by:
0.78/sqrt(substream count)

"... with Stochastic Averaging™

1985

‘Loglog Counting™
,o;%)"'::".'I'::".'I'::".',':: '
e

max set lndex

.. 0f Large Cardmall ties”

2003

“Loglog Gounting™
error bounded by:

1.3/sqrt(substream count)

"... 0f Large Cardinalities”

2003

“Loglog Counting™

‘ z is a positive real. The function ub() is equal to e*(1 + 22~)

, Proof of proposition lees us a nice expression for the
A g A
3 g integral of f.

/ f(z)dz = zl/mzk l/mkl' ((—n /24 — (2n/zl)k).

k>1

"... 0f Large Cardinalities”

2003

“Hyperloglog™

2007

(zi M;)
famm2\ ™/ — same data structure as Loglog

— hetter mean of register values
(arithmetic to harmonic mean)
—> tighter error bounds
v _

I

1
m

compute Z := (Z o~ Ml]) ; {the “indicator” function}
j=1

return E := a,ym?Z with oy, as given by Equation (3).

Enougn theory!

postaresql-hll

—.code

—design
—examples
—data brag
~lessons learned

postaresql-hll

2500 lines of C

500 lines of SQL

1000 lines of comments
~Austin Appleby’s C++ Murmur3
—~55MB test vectors

postaresql-hll

—~marshal to/from bytea
-bit slicing to update registers

~formula for cardinality
~union(hll, hil)

postaresql-hll

compact, combinable, approximate
unique counts of users

postaresql-hll

compact, combinable, approximate

Hierarchical storage format

—empty token (3 hytes)

—explicit list of hashes (8 bytes x configurable)
—hashmap of register index to register value (..)
—full array of registers representation (5 x 2™ bytes)

postaresql-hll

compact, combinable, approximate

Additivity allows:
—union (“seen A or seen B”)

—union preserves relative error
—set difference* (“seen A but not B”)
—intersections* (“seen A and B”)

*use sparingly! non-linear error propagation! (bit.ly/hllinter)

postaresql-hll

compact, combinable, approximate

Relative error:
—2'* x 5-hit registers = 81920 bits - 10kB
— 190 relative error
—e.2. 1B uniques x 1% = +10M absolute count error

examples

dally_uniques
Column Type Meaning
report_date | date day of counts

impressions | bigint number of page views

users hll set of unique cookie ids

examples

SELECT
report_date,
impressions,
#users
FROM daily_uniques
WHERE report_date BETWEEN
‘..." AND "...'

examples

SELECT report_date,
SUM(impressions) OVER last7 AS imps_cumu,
#hll_union_agg(users) OVER last7 AS users_cumu,
imps_cumu/users_cumu AS avg frequency
FROM daily_uniques
WINDOW last7 AS
(ORDER BY report_date ASC ROWS 6 PRECEDING)
WHERE report_date BETWEEN '..." AND '...°
ORDER BY report_date ASC

examples

For more examples, see:

bit.ly/pghll

brageing rights

-PG 9.3

—~MMs new hll instances/day
~hll_union_agg TM rows ~20s
— Java interop via java-hll

— Been doing this for 4+ years

lessons learned

—Pick a good non-cryptographic hash
—Don’t mess with inputs

—Rigorously unit and fuzz test interop
~Leave crumbtrails to the paper in source

| am extremely grateful
to the following persons
for their contributions to
both this talk and to our
open source efforts.

History: bit.ly/lumbroso

Sketching Vis: bit.ly/sketchotd

Jérémie Lumbroso

" Rob Grzywinski
Matt Curcio
e i Ben Linsay

Streaming book: bit.ly/muthubook | S MUthUkriShnan

Streaming ppt: bit.ly/andonippt , Alex Andoni

HLL physics: bit.ly/chenderson - Ch ris Henderson

Hashing: bit.ly/pesyna .

Colin Pesyna

http://bit.ly/lumbroso
http://bit.ly/pesyna
http://bit.ly/chenderson
http://bit.ly/sketchotd
http://bit.ly/andonippt
http://bit.ly/muthubook

@alberts
@hlinsay
@jdmaturen
@metdos
@ozgune
@yerenkow

github.com/aggregateknowledge/{postgresql.java,js}-hll

http://github.com/aggregateknowledge
http://github.com/aggregateknowledge

Papers

—MIJRTY (‘81)

—Probabilistic Counting (‘83)

—Probabilistic Countinq with Stochastic Averaqing (‘85)
—LogLog (and SuperLogLog) (‘03)

—CountMin Sketch (‘05)

—HyperLogLog (‘07)

—K Min Values (‘07)

http://www.cs.utexas.edu/users/boyer/mjrty.ps.Z
http://www.ic.unicamp.br/~celio/peer2peer/math/bitmap-algorithms/flajolet-coin-tossing.pdf
http://www.mathcs.emory.edu/~cheung/papers/StreamDB/Probab/1985-Flajolet-Probabilistic-counting.pdf
http://algo.inria.fr/flajolet/Publications/DuFl03-LNCS.pdf
http://dimacs.rutgers.edu/~graham/pubs/papers/cm-full.pdf
http://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf
http://people.mpi-inf.mpg.de/~rgemulla/publications/beyer07distinct.pdf

Other Materials

—Notes/Lectures from DIKU Summer School on Hashing (‘14)
—Mikkel and Michael’s talks are fantastic.
—In fact, just go read everything Michael’s ever written on sketching

— {{Invertible, Compressed, Counting} Bloom, Cuckoo} {filters, tables}

http://www.diku.dk/summer-school-2014/course-material/
http://www.eecs.harvard.edu/~michaelm/

| WILL PERSONALLY
BRIBE YOU

TO MAKE
POSTGRESQL-HLL

THANK YOU!

Timon Karnezos
@timonk
research.neustar.biz

